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Abstract. This paper proposes a novel approach that detects and tracks
carried objects by modelling the person-carried object relationship that
is characteristic of the carry event. In order to detect a generic class of
carried objects, we propose the use of geometric shape models, instead of
using pre-trained object class models or solely relying on protrusions. In
order to track the carried objects, we propose a novel optimization pro-
cedure that combines spatio-temporal consistency characteristic of the
carry event, with conventional properties such as appearance and motion
smoothness respectively. The proposed approach substantially outper-
forms a state-of-the-art approach on two challenging datasets PETS2006
and MINDSEYE2012.

1 Introduction
Detection and tracking of carried objects is an important component of vision
systems whether these are surveillance systems that aim to detect events such
as leaving, picking up or handing over a luggage, or robots that learn to perform
better in indoor environments by analysing events where humans manipulate
carried objects. Despite significant progress in object detection and tracking,
the task of detecting and tracking carried objects well enough to be able to use
them for activity analysis is still a challenging problem. This task is elusive due
to the wide range of objects that can be carried by a person and the different
ways in which carried objects relate to the person(s) carrying it e.g. carrying,
dropping, swinging, picking it up, occluding etc.

An early approach [2] demonstrated that pre-trained object-class models for
specific types of objects may be useful in domains where the variety of carried
objects is relatively small and is known in advance, the objects are of sufficient
size and there is limited clutter in the background. To generalise to a more real-
istic setting, researchers have focused on indirect ways of characterising carried
objects, which first aim to identify the person region and background and then
attempt to explain the remaining regions in terms of carried objects. The first
of these approaches looked for carried objects in protrusions which are regarded
?
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as the part of foreground that is different from the person region. This approach
evolved starting from an early work - Backpack [6] - that proposed temporal
templates as a way of characterising the person region. Subsequent researchers
have extended this approach by introducing refinements - such as modelling vari-
ances from the temporal templates [1] and 3-D exemplar temporal templates
corresponding to different viewpoints of a walking person together with spatial
priors in a very recent work [4]. Other indirect approaches have built a pre-
trained appearance model of persons without carried objects and they detect
person carrying objects as anomalies [9].

We propose a novel approach for carried object detection and tracking with
the following contributions. (1) we perform object detection by using geometric
shape models to characterise carried objects. In this way, we avoid using specific
pre-trained object class models as in [2]. (2) our approach integrates detection
and tracking by incorporating normal motion properties that apply generically to
most carried objects such as spatio-temporal smoothness that have been widely
used in the tracking literature, but have not been exploited for the carried object
task. (3), and most importantly, we propose a novel approach for carried object
detection and tracking by characterising carried objects given that only the carry
event occurs i.e. that these objects follow a person’s trajectory with a temporally
continuous and characteristically consistent spatial relationship with respect to
the person. Accordingly, we introduce an optimisation strategy that starts with a
small set of detections with possibly false positives and increasingly incorporates
a learned person-object spatial relationship that characterises the carry event.
This procedure starts building longer tracks that tend to approximate the true
carried object trajectory, while also rejecting the false positives. The learned
spatial relationship leads to significant improvement compared to using a static
spatial prior [4]. §5 shows that the proposed approach significantly improves the
performance over a state-of-the-art carried object detector [4] on the PETS2006
and MINDSEYE2012 (www.visint.org) datasets. Dataset and code can be found
at: http://www.engineering.leeds.ac.uk/computing/research/vision/CODT.

2 Proposed Formulation
We consider a video I which is a time series of images {I1, ..., It, ..., IN}. For
this video, we obtain a corresponding sequence of foreground regions F =
{f1, ..., f t, ...fN} and a set of person tracks P = {p1, ..., pM}. Here a person
track pi ∈ P is a time series of segmented person regions {..., pti, ...}. In addi-
tion, we define R as a set of candidate object regions, from which a set O of all
possible candidate object tracks may be sampled. We describe the procedure for
obtaining the foreground, person tracks, object detections in §4.

In this work, we make the simplifying assumption that carry is the only
event that governs the relationship between a person pi and an associated set of
carried object tracks O ⊆ O i.e. the carried objects are not picked up, dropped
or given to another person. That is, if a carried object track oj ∈ O is associated
with a person track pi, then there exists a bijective relationship between the
corresponding regions otj ∈ oj and pti ∈ pi. We also assume that the carried
object tracks are independent of each other.



Under these assumptions, our task is to find a set of carried object tracks
O associated with each person track pi. Accordingly, for each person track pi
we formulate our task as finding an optimal set of carried object tracks Ô that
maximises the following objective.

Ô = arg max
O⊆O

∏
oj∈O

P(oj |ΘO)P(oj |pi, F,ΘC)P(oj |ΘS) (1)

In the above equation, the probability distribution P(oj |ΘO) prefers tracks
that consists of regions which correspond to certain geometric shapes, as de-
tailed in §2.1. The probability distribution P(oj |pi, F,ΘC) models the person-
object relationship that is characteristic of the carry event (§2.2). The proba-
bility distribution P(oj |ΘS) parametrised by the smoothness model ΘS in the
above equation regards a track oj being more likely, if the sequence of carried
object regions constituting this track are smooth with respect to motion and
appearance and if it has other desirable properties such as minimum overlap
with other tracks, minimum gap and maximum possible length. These measures
are computed similarly to [15].

2.1 Geometric Object Shape Models P(oj|ΘO)
We regard a candidate object track oj ∈ O as more likely to be a carried object
if the shape of the region is likely to be any of the pre-defined generic geometric
shapes. The distribution P(oj |ΘO) in equation 1 measures this likelihood with
respect to a set of geometric shape models ΘO. Assuming independence between
an object region otj and the rest of the object regions in an object track oj , we fac-
torise the likelihood P(oj |ΘO) as P(oj |ΘO) =

∏
ot

j∈oj
P(otj |ΘO). We marginalise

across each of the object shape models θ ∈ ΘO and assume a uniform prior distri-
bution P(θ) across these models to obtain P(otj |ΘO) = 1/|ΘO|

(∑
θ∈ΘO

P(otj |θ)
)

.
We consider a convex shape model with parameter θc ∈ ΘO and an elongated

shape model with parameter θe ∈ ΘO since many carried objects have a shape
that is approximately convex (e.g. briefcases, suitcases, petrol cans) or elongated
(e.g. objects with an elongated part - shovels, guns, brooms). We evaluate the
probabilities P(otj |θc) and P(otj |θe) for the convex and elongated model as an
exponential distribution 1/z0 exp(θcC(E(otj))) and 1/z1 exp(θeE(E(otj))) over a
convexity measure C(E(otj)) and a parallel measure E(E(otj)) respectively. Here,
E(otj) refers to the set of edges that form the boundary of the object region otj . In
§4, we describe our novel level-wise mining approach for extracting the set R of
candidate object regions, where each such region is formed by a set of edges. We
compute the degree of convexity C(E(otj)) for a region otj , using the method in
[16]. In order to compute the degree of parallelism, E(E(otj)), we only consider
those candidate sets of contour segments E(otj) which can be partitioned into
two non-overlapping proximal groups of nearly co-linear contour segments, that
are roughly parallel to each other. We combine a measure of co-linearity [13]
within each group with the degree of parallelism across the two groups.

2.2 Person-Carried Object Relationship P(oj|pi, F,ΘC)
We regard a candidate object track oj ∈ O as more likely to be a carried object
associated with a person pi if: (i) the track oj follows pi’s trajectory with spatio-



temporal consistency characterised by the carry event ; (ii) the object regions
otj ∈ oj overlaps with protrusions corresponding to the person region pti ∈ pi.
Both these person-carried-object relationships are modelled by the probability
distribution P(oj |pi, F,ΘC) with carriedness parameter set ΘC . Given model
parameters θr for protrusions, θs for spatio-temporal consistency and the fore-
ground regions F , we factorise this distribution whose two terms that capture
person-object spatial relation and protrusions respectively, as explained below.

P(oj |pi, F,ΘC) =
∏
ot

j∈oj

P(otj |pti, θs)P(otj |pti, f t, θr)

Person-Object Spatial Relation. A novel way of characterising carried ob-
jects given that only the carry event occurs is that they follow a person’s tra-
jectory with a temporally continuous and characteristically consistent spatial
relationship with respect to the person. To quantify this, we propose a voting
measure that counts the number of times the relative position of a pixel with
respect to the centroid of a person’s region falls within a detection.

Let dxpt
i
, dypt

i
be the offset of a pixel relative to the centroid (xpt

i
, ypt

i
) of

the i’th person’s bounding box pti at time t i.e. (xpt
i

+ dxpt
i
, ypt

i
+ dypt

i
) is the

absolute position of the pixel relative to the image frame It. We define a function
δ(dxpt

i
, dypt

i
, otj) as follows.

δ(dxpt
i
, dypt

i
, otj , i) =

{
1, if (xpt

i
+ dxpt

i
, ypt

i
+ dypt

i
) ∈ otj

0, if (xpt
i

+ dxpt
i
, ypt

i
+ dypt

i
) 6∈ otj

Using the above definition we define the heatmap H of a relative offset
(dxpt

i
, dypt

i
) position as the following.
H(dxpt

i
, dypt

i
) =

∑
oj∈O

∑
ot

j∈oj

δ(xpt
i

+ dxpt
i
, ypt

i
+ dypt

i
, otj , i)

Given a set of tracks O associated with a person pi, the intensity values in the
heatmap measure the number of votes for each relative offset pixel (dxpt

i
, dypt

i
)

given by the tracks in O. Since we expect carried objects to have a consistent
relative location with respect to the person and noise to be more randomly
distributed, the heatmap captures the locations relative to the person where
carried objects is most likely to exist. This is as a result of these locations
receiving higher votes in the heatmap due to the repeated presence of potential
carried objects even though they may be sparsely detected in the video.

We regard a detection otj as more likely to be a carried object if it covers
pixels with high intensity values in the heatmap. We model the relative positional
probability P(otj |pti, θs) as follows.

P(otj |pti, θs) =
1
z3

exp
(
θs

∑
(x,y)∈ot

j

H(x− xpt
i
, y − ypt

i
)
)

(2)

This distribution tends to get closer to the true distribution of the carried
objects’ relative location with respect to a person (Fig. 1) with the increasing
number of true detections over the false detections, as further described in §3.
Protrusions. Areas corresponding to protrusions have been shown to be likely
carried object regions with respect to the region of the person carrying it. For
each person region pti, we obtain a protrusion region αti by subtracting the per-
son region pti from the foreground region f t in frame It and considering only
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Fig. 1: An illustration of the learned spatial distribution of the object relative to the
person approximates the true relative position in the leftmost figure.

a subregion of αti in the vicinity of the person (defined by the detected person
bounding box). We regard a region otj as more likely to be a carried object if
it overlaps significantly with αti. Accordingly we compute the degree of over-
lap V(αti, o

t
j) = (αti ∩ otj)/(αti ∪ otj) and then evaluate P(otj |pti, f t, θr) using an

exponential model 1/z2 exp(θr(V(αti, o
t
j)).

3 Event Driven Optimisation.
We now describe the main novelty of the paper which is an event driven optimi-
sation. According to this scheme, the optimal solution of the objective function
in equation 1 emerges as a result of iterations which involve cyclic interactions
between the two components of the objective function. We define the first com-
ponent, P(oj |ΘO)P(oj |ΘS), as a product of the probability distributions corre-
sponding to the detection strengths and spatio-temporal continuity respectively.
The second novel component P(oj |pi, F,ΘC) is the relative positional proba-
bility distribution that models the person-object spatial relationship which is
characteristic of the carry event.

We first describe the basic search procedure in the optimisation process be-
fore discussing the role of these two components. For each person track pi, the
optimisation involves starting with an initial set of tracklets O0 and then apply-
ing a sequence of moves to iteratively obtain a sequence of hypothesised tracklets
(O1, ..., Ok, ...). The objective function given in equation 1 is used at each step k
in the iteration to decided whether to accept the new hypothesis Ok or to per-
sist the previous hypothesis Ok−1. We adopt two simple moves, (i) form larger
tracklets from smaller ones by randomly choose a tracklet and then linking this
tracklet to a neighbouring tracklet, which is chosen uniformly at random (u.a.r)
from the set of neighbouring tracklets. (ii) split larger tracklets into smaller ones
by choosing a tracklet u.a.r from the set of tracklets and then selecting a location
along this chosen tracklet u.a.r and finally breaking it into two smaller tracklets
at this location. After a relatively large number of iterations, we terminate the
optimisation process and regard the final set of tracklets of length more than one
as the optimal set of carried objects Ô. In the following we first introduce the
basic tracking system to which we add the contribution of the heatmap and an
attention-like mechanism leading to three variants of the optimisation process.
We evaluate each of these variations in the experimental section.
Basic Tracking System (BTS). When this procedure is used only with the
first component, it tends to result in carried object tracks that have higher
detection probabilities P(oj |ΘO) and are smooth with respect to the properties
captured in P(oj |ΘS). We call such a system as the basic tracking system, that
we refer to in our experimental section.



Fig. 2: Examples of using Geometric Shape Models for carried object detection. Green
segments represent edges from the Canny edge detector and the solid convex/elongated
objects mined in a level-wise fashion.

Heatmap Driven System (HDS). The introduction of the 2nd component
i.e. the relative positional probability distribution P(oj |pi, F,ΘC) tends to favour
the formation of object tracks whose objects firstly overlap with protrusions,
and secondly (more importantly) those tracks that overlap with the heatmap
given in equation 2. That is these tracks tend to accumulate higher values of
the positional probability distribution and therefore have the characteristics of
a carried object, as described in §2.2.
Attention Driven System (ADS). To further capitalise on the potential of
this relative positional probability distribution, we introduce an attention-like
mechanism into the optimisation process, where we start by considering only
those object detections that have high detection likelihoods and we call these
initial tracklets of length one as initial seed tracklets. At each iteration, the link
move forms larger seed tracklets by focussing on connecting only seed tracklets
to other seed tracklets or non-seed detections (tracklet of length one). Similarly
the split move operates only on the seed tracklets.

At each iteration, only the seed tracklets contribute to the computation of
the heatmap. As the heatmap becomes more well defined with further iterations,
some of those non-seed tracklets with higher positional probability distributions
(although they may have relatively lower detection likelihoods) tend to be in-
cluded as seed tracklets. These updated seed tracklets are used for applying
moves in the next iteration. In this manner, an attention-like mechanism be-
gins to evolve with a tendency to select object tracklets that correspond to the
true carried objects, against other false positive candidate tracks. Due to the
cyclic interactions between the two components of the objective function, the
optimisation often starts with a sparse set of detections with possibly several
false positives and starts building longer tracks that tend to approximate the
true carried object trajectory, while rejecting the false positives.

4 Object Detection

We now describe the procedure for obtaining foreground, person regions and car-
ried object detections (Fig. 2) respectively. We start by computing a sequence of
foreground regions for a video using an off the shelf foreground extraction tech-
nique [11]. We then obtain person tracks by detecting a set of person regions in
each frame and then we track all these detections using a dynamic programming
based tracker [10]. The person regions in each frame are obtained in three steps.
First we detect bounding boxes corresponding to the person detections obtained
using a standard object detector with a trained person model [5]. Second, we
obtain bounding boxes that are body part estimates inside each of the person



(a) (b) (c) (d) (e) (f) (g)
Fig. 3: The process of obtaining candidate carried object detection. (a) We first obtain
the image corresponding to the person detection; (b) We then apply the method in
[8] to enhance edges corresponding to natural boundaries; (c) We apply foreground
extraction on b (background shown in green); (d) We apply colour based segmentation
to c; (e) We identify the two largest segments (given in red) in d, which tend to
correspond to regions on the person. The carried object is more likely to be present in
the non-person regions (shown in green); (f) Using the regions identified in e, many of
the line segments belonging to the person are removed (coloured with cyan); (g) The
result of applying level-wise mining to the remaining edges (coloured yellow in f ) to
obtain candidate carried object regions (coloured in green), as an input to the event
driven optimisation.

bounding boxes using articulated pose estimation code [14]. Finally we take
the union of the regions circumscribed by each part to be a segmentation of the
person.

In order to find likely candidates for carried object detections, we first remove
a majority of line-segments that form the boundaries of persons but not of the
objects using a procedure illustrated in Fig. 3 (a-f). This approach drastically
reduces the set of line segments enabling us to generate a smaller set of candidate
object regions from the remaining set of line segments. We then search this set
for candidate object detections otj , where each detection is just a subset of line
segments forming a fully or partially connected chain (Fig. 3.g), that are likely
to belong to any of the geometric shapes under consideration. In order to search
efficiently, we use a level-wise mining procedure, where two candidate k − 1
subsets are merged if they share k − 2 segments and accepted as a k candidate
set otj , if the likelihood score P(otj |θ) of otj , with respect to a geometric shape
model θ ∈ ΘO is above a minimum conservative threshold.

5 Experimental Setup

The experimentation consists of two aspects, first of which is a comparison be-
tween the proposed approach and the state-of-the-art protrusion based Damen
and Hogg’s carried object detector [4], henceforth DHD. Secondly, we would
like to further explore the true potential of our approach, by alternating certain
key components and identifying their effects in terms of detection performance.
As a result, a benchmark dataset, namely the PETS2006 dataset is used for
the first aspect of baseline comparison. On the other hand, a much more com-
plex dataset, the MINDSEYE2012 dataset, is used in a set of more extensive
experiments, which are aimed at the exploration of key components of the pro-
posed approach. The corresponding evaluation is concentrated on the detection
performance of the compared approaches and thus it is done with respect to
spatio-temporal localisation of each carried object per frame by computing the
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Fig. 4: Result plots of compared methods in terms of F1 scores as the threshold of
overlap increases on both PETS2006 and MINDSEYE2012.

standard overlap ratio also used in [4], except that we also vary the overlap
threshold and report results for each value.
Datasets. All seven videos of the third camera were chosen, due to its view
angle, for PETS2006, similar to [4]. Overall 70 video clips were created by a third
party from the MINDSEYE project year 2 dataset, with an average length of 200
frames. The complexity of this dataset results from variations in camera settings,
environmental factors, e.g. changes in light conditions (e.g. brightness due to
weather), moving trees and grasses in the background, as well as a greater variety
of carried object types. The ground-plane homography estimation of PETS2006
was provided as part of the sample set, while that of MINDSEYE2012 is done
for each camera setting. Human tracks of both datasets are generated through
first applying basic background subtraction to obtain foreground segmentation
and then using an off-the-shelf tracker [10].
Parameter Settings. In our experiments, we tune the parameter set ΘO (cor-
responding to the geometric shape models), ΘS (modelling smooth trajectories),
and θr ∈ ΘC (concerning the overlap between the protrusion and the object mask
respectively), on a separate subset of the Mindseye project. Values of these pa-
rameters are independent from any particular selection of subset, containing a
reasonable number of videos. This is because general geometric properties ΘO

(e.g. convexity) are invariant across samples from any dataset. As focus of this
work is to prove a concept, only the convex shape model is investigated. Simi-
larly ΘS are generic due to similar motion patterns in the datasets (e.g. people
walking). Finally, for θr ∈ ΘC, irrespective of the dataset and the perspective, it
is reasonable to assume that the protrusion mask corresponds to a part or whole
of the object. This is due to the assumption that the person and the carried ob-
ject together constitute the foreground mask. In addition, we set the parameter
θs ∈ ΘC equal to 1 over the length of the person track in consideration, acting



(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o) (p) (q)
Fig. 5: Illustration of the successes and the failures of our approach and also a com-
parison with [4]. For images (a)-(m), boxes coloured in green correspond to ground
truth, red to [4] and blue to those obtained using the proposed approach. Note that
the ground truth is sometimes imperfect eg. (l). Images (n)-(q) illustrate the obtained
contour of the detected object using the proposed method.

as a normalisation factor. Default parameter settings of the detector [4] are used
for both datasets, as it is often considered most suitable for general uses.

6 Results and Analysis
Results. Fig. 4a gives F1 curves for DHD, raw detections (RD) and the BTS,
with Fig. 4b additionally showing HDS and ADS, with each being better than
the previous. Even though BTS out-performs DHD on both datasets, ADS sig-
nificantly outperforms DHD and all other variations of the system.
Qualitative Analysis. In this section we also present a qualitative analysis of
the results on PETS2006 and MINDSEYE2012 by summarising successes and
failure cases Fig 5. (a)-(f) illustrate how our approach is able to detect different
types of objects such as boxes, bags, plastic bags and suitcases. This highlights
the merits of performing generic object detection without specific object models.
(g)-(i) show a few cases where our approach performs poorly, as the edges do
not sufficiently demarcate the object from the person. The (c,d,n,o) images il-
lustrate that our approach is also able to detect objects that are not protrusions.
(a,b,c,f,j,k,l) highlight some typical cases where the protrusion based approach
[4] fails whilst ours succeeds. (d) illustrates a situation when multiple persons
are close by, or when the person’s bounding box is displaced. (f) illustrates a case
where the influence of a relatively strong prior on the position of the object in
relation to the person can hinder the detection of an object (e.g. basket) above a
person’s head. (n,o,p,q) also illustrate that our approach can localise an object
accurately with a contour around it.

7 Summary and Future Work
We have introduced a vision system that performs carried object detection and
tracking. Our approach characterises carried objects in terms of generic shape
properties such as convexity, whilst taking account of the fact that they are



often, but not always, protrusions on a person silhouette, and exploiting the
property that they have continuous and spatially consistent trajectories relative
to the person carrying them. In addition, an iterative event driven optimisation
process, which uses a heatmap and attention like mechanism, is introduced to
obtain an optimal set of object detections. Experimental results show that our
approach significantly outperforms a state-of-the-art technique [4], especially the
ADS system where both a heatmap and attention-like mechanism are employed,
on two challenging datasets. A future extension of this work would be to include
other geometric shapes and events such as drop, pick-up, give etc.
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